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Abstract: A resolution enhancement technique for optical coherence tomography (OCT), based
on Generative Adversarial Networks (GANs), was developed and investigated. GANs have been
previously used for resolution enhancement of photography and optical microscopy images.
We have adapted and improved this technique for OCT image generation. Conditional GANs
(cGANs) were trained on a novel set of ultrahigh resolution spectral domain OCT volumes,
termed micro-OCT, as the high-resolution ground truth (∼1 µm isotropic resolution). The ground
truth was paired with a low-resolution image obtained by synthetically degrading resolution 4x
in one of (1-D) or both axial and lateral axes (2-D). Cross-sectional image (B-scan) volumes
obtained from in vivo imaging of human labial (lip) tissue and mouse skin were used in separate
feasibility experiments. Accuracy of resolution enhancement compared to ground truth was
quantified with human perceptual accuracy tests performed by an OCT expert. The GAN loss in
the optimization objective, noise injection in both the generator and discriminator models, and
multi-scale discrimination were found to be important for achieving realistic speckle appearance
in the generated OCT images. The utility of high-resolution speckle recovery was illustrated by
an example of micro-OCT imaging of blood vessels in lip tissue. Qualitative examples applying
the models to image data from outside of the training data distribution, namely human retina and
mouse bladder, were also demonstrated, suggesting potential for cross-domain transferability.
This preliminary study suggests that deep learning generative models trained on OCT images
from high-performance prototype systems may have potential in enhancing lower resolution data
from mainstream/commercial systems, thereby bringing cutting-edge technology to the masses at
low cost.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is a 3-dimensional optical imaging technique, and has
become part of the standard of care in ophthalmology [1] while growing in importance in other
clinical specialties such as gastroenterology [2]. Axial resolution of OCT is governed by the light
source bandwidth, while lateral (transverse) resolution is governed by the numerical aperture
(NA) of the illumination beam [3]. Hardware efforts to improve axial and lateral resolution can
be complex, requiring high performance lasers and imaging objectives, and dispersion matching
in the reference and sample paths. Computational techniques have been employed to overcome
these constraints. For axial resolution, dispersion mismatch can be corrected by compensation

#402847 https://doi.org/10.1364/BOE.402847
Journal © 2020 Received 14 Jul 2020; revised 6 Oct 2020; accepted 6 Oct 2020; published 19 Nov 2020

https://orcid.org/0000-0003-3237-4034
https://orcid.org/0000-0003-2642-1076
https://orcid.org/0000-0002-4683-9130
https://orcid.org/0000-0001-6691-9253
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.402847&amp;domain=pdf&amp;date_stamp=2020-11-19


Research Article Vol. 11, No. 12 / 1 December 2020 / Biomedical Optics Express 7237

algorithms to restore resolution to the ideal limit set by the light source; recent studies have
proposed methods to surpass that limit [4]. For lateral resolution, traditional deconvolution
techniques such as the Richardson-Lucy algorithm have been suggested [5], while physics-based
algorithms such as interferometric synthetic aperture microscopy have also been successful [6].

Resolution enhancement of images, known as ’computational super-resolution’ in the computer
vision literature, is a longstanding and rich area of research, beginning almost four decades ago
with the proposed use of multiple low-resolution image frames [7], a powerful technique that
has continued to improve tremendously in recent years [8–10]. Super-resolution based on single
images has since been proposed [11]. Super-resolution algorithms for OCT for enhancing low
sampling resolution (subsampled) images while also performing denoising (speckle reduction)
have also been previously reported [12,13], alongside studies of OCT speckle that have proposed
statistical models of OCT signal and noise [14]. Deep learning has found most success in image
classification and feature detection tasks [15], and has also had a growing impact in computational
imaging and inverse problems [16] such as super-resolution, notably in optical microscopy
[17] where deep learning has been used to improve image quality [18]. Generative adversarial
networks (GANs) [19], an emerging branch of deep learning, has shown promise in a wide range
of imaging applications. GANs use two powerful neural networks competing with each other to
greatly enhance the quality and realism of machine-generated images, potentially performing
better than a single neural network alone or blind techniques without data priors. Conditional
GANs (cGANs) are a flavor of GANs that learn to generate a mapping between two domains by
training on image pairs, where a ‘conditional’ image in one domain is co-registered with a ground
truth image from another domain [20]. These techniques have been investigated in photography,
microscopy [21], as well as OCT studies [22,23]. The latter studies aimed to remove speckle by
training on ground truths that were frame-averaged OCT images with a smoothed appearance.
This form of denoising can be preferred in some applications when assessing tissue structures or
when images have low signal-to-noise ratio. However, speckle can contain important information
about tissue scatterers and blood flow. Also, [23] studied the enhancement of low sampling
resolution by synthesizing low-resolution images with subsampling; while important, this is a
different mechanism from low optical resolution, which is related to laser bandwidth and laser
spot size.
In this work we explore the hypothesis that cGANs can be used to enhance the optical axial

and lateral resolution of OCT images while preserving and improving the detail of speckle
content, trained on an ultrahigh resolution OCT ground truth. Using images obtained by micro-
OCT [24,25] with ∼1µm resolution, axial and lateral resolutions were synthetically degraded
by windowing/averaging the interference spectra, producing an intrinsically co-registered set
of paired low-high resolution data for training. Injection of noise in the cGAN architecture
was found to substantially improve the quality of image generation. Comparisons were made
between our approach and several previously reported techniques - classical blind deconvolution
without deep learning (Richardson-Lucy deconvolution), a state of the art non-adversarial
deep learning approach, and a vanilla cGAN with no noise injection. Models were separately
trained on two datasets - mouse skin and human lip. Three use cases were investigated - the
conversion of 1-dimensional low resolution (axial or lateral) to high resolution, and the conversion
of 2-dimensional (axial+lateral) low resolution to high resolution. The 2-D case was further
investigated for the realism of the speckle reconstruction, using a perceptual quality test performed
by an OCT expert, where our GAN approach was found to perform better than previous techniques.
We also report training details and hyperparameter heuristics that are specific to OCT image
generation. To illustrate a potential use case of high-resolution speckle recovery, we demonstrate
high-resolution imaging of a blood vessel in labial tissue, where the dynamics of small biological
particles may be visualized. Lastly, we show qualitative examples of our models performing
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enhancement on OCT data from outside of the training data distribution, namely human retina
and mouse bladder, suggesting potential for cross-domain transferability.

The paper has the following contributions: 1. we identified critically important modifications to
a conventional conditionalGAN framework for producing high quality resolution enhancement and
realistic speckle generation in OCT images, namely noise injection and multi-scale discrimination,
2. highlighted the utility of extremely high resolution prototype OCT systems such as micro-OCT
for the training of resolution-enhancing deep learning tools that can be applied to conventional
OCT images, 3. proposed the use of a single human OCT expert to evaluate quality and realism
of AI-enhanced images as an alternative to conventional metrics, with the caveat that results are
subjective and may not generalize, 4. showed a potential application of high quality speckle
recovery towards the study of small biological features/particles using OCT at cellular resolution,
5. showed a potential application of applying AI enhancement tools towards improving resolution
of conventional OCT images from commercial systems. Taken together, the paper demonstrates
the value of generative and GAN methods, an emerging set of artificial intelligence techniques,
when applied to the important field of OCT image analytics and enhancement, potentially
delivering broad impact to the large community of OCT users and researchers.

2. Materials and methods

2.1. micro-OCT image data and pre-processing

Images were obtained using a prototype micro-OCT system previously reported [26], with axial
scan rate of 60 kHz, axial resolution 1.3 µm (tissue) and lateral resolution 1.8 µm. Two datasets
were investigated - 10 volumes of mouse skin images from 4 living mice, and 8 volumes of
human labial (lip) mucosa images from 2 human subjects, acquired in vivo from different regions
of tissue by a handheld probe and reported in an earlier publication [26]. Models for mouse skin
and human lip tissue were trained separately. Images were grouped by volume scans and were
allocated to either training or validation data, ensuring that similar B-scans used for training were
not seen during validation. Each volume had dimensions ∼ 800 × 1000 × 500 (∼500 B-scans
per volume). The pixel size was 0.4 µm (axial) and 0.8 µm (lateral). To generate realistic low
axial resolution images, a tight Gaussian window with full width at half maximum (FWHM)
set to 25% of the source bandwidth was applied to the raw k-space interference fringe data,
degrading the axial resolution to ∼5 µm while preserving the depth dimension. The 4x factor in
degradation was selected to produce ∼5 µm, which is in the range of axial resolution for a typical
commercial spectral domain OCT system. To generate low lateral resolution images, the fringes
were moving-averaged over 6 A-scan lines, corresponding to ∼5 µm in the lateral direction. For
2-D (axial and lateral) low resolution, the fringes were windowed then moving-averaged. Thus
the low resolution images were intrinsically co-registered with the high resolution images, with
the same pixel dimensions. The images were then cropped to non-overlapping 256 × 256 image
patches for model training, with deep low signal regions discarded. The skin volumes were split
into 7 volumes for training (28,728 training image patches) and 3 volumes for validation (12,312
validation image patches). The lip mucosa volumes were split into 5 volumes (30,780 training
image patches) for training and 3 volumes for validation (18,468 validation image patches).
Different models were trained on two versions of data - single frame data, and 3-frame moving
averaged data. The 3-frame averaging served as a simple denoising technique that improved
the perceptual quality of the images, and is a standard practice in OCT processing when some
speckle reduction is preferred.

2.2. cGAN architecture and training

A cGAN architecture was used for the image enhancement deep learning model (Fig. 1). In this
architecture, two powerful neural networks learn from each other, thereby improving the quality
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of the outputs. A ‘generator’ neural network learns from paired training data to produce an
enhanced image from a ‘conditional’ input image while regularized by a distance metric between
the enhanced image and a ground truth image. A generated ‘fake’ or a genuine ground truth
image combined with the generator conditional input is fed to a ‘discriminator’ neural network,
which learns to discriminate between the genuine and generated images, then returns feedback to
the generator. As training of the generator and discriminator models is performed alternately,
the two models compete till a theoretical limit where the generated images are indistinguishable
from the ground truth, although in practice the generated quality does not necessarily converge
to an optimum. This previously reported cGAN design is widely known as ‘pix2pix’ [20] and
has several open-source skeleton implementations generously made available by the machine
learning community [27,28]. We made specific modifications as described below.

Fig. 1. Model architecture of conditional GAN (cGAN) for super-resolution. Gaussian
noise is injected during upsampling in the generator and at the input to the discriminator, to
stabilize training and produce higher quality results.

The generator used a ‘U-Net’ architecture [29] where a series of downsampling and upsampling
convolutional paths with skip connections capture patterns at various levels of abstraction. A
U-Net is traditionally used for image segmentation, but has also proven effective for the generation
task. Recent deep learning papers have suggested that a deeper generator comprising multiple
residual network (ResNet) blocks might have superior performance [30], but we did not observe
significant differences with this on our training data. The generated image was fed to the
discriminator, which was two ‘patchGAN’-style classifiers operating at two image scales [20,30].
The receptive field of each pixel in the discriminator output was designed to be small (15 and 30
pixels width) relative to the input, such that finer details at the level of speckle might be evaluated
by the discriminator. The GAN objective was regularized by an L1 (pixel-wise mean absolute
difference) loss as follows: LGAN + λL1 where λ was a hyperparameter set to 10. Larger values of
λ up to 100 were suggested in prior studies using photographic data [20], but we found these to
be prone to poor speckle generation and blurry images (Fig. 2). We also experimented with using
an additional Difference of Structural Similarity (DSSIM) loss term as suggested in the literature
[21,31] but this showed little improvement for OCT data and also produced blurry images; we
have observed (Fig. 2) that SSIM may be a poor training objective and evaluation metric for
OCT generation. The Adam optimizer was used with learning rate 0.0001 and β1=0.5, similar to
previous reports [20]. Batch size was 8 samples. For the first 2 epochs, the discriminator was
trained on 1 step for every 3 steps trained by the generator; for the next 2 epochs, the discriminator
was trained on 1 step for every 2 generator steps, and for subsequent epochs the discriminator and
generator were trained equally. This is a commonly used heuristic for GAN training to prevent the
generator from being overwhelmed by the discriminator too early, because the generator quality
in the early epochs is expected to be much worse than real images. Other training heuristics
previously recommended for GANs such as normalization of inputs between −1 and 1, soft
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and noisy labels were used [32]. Models were trained for 30 epochs with no early stopping or
model pretraining/initialization. To further improve the quality of the images, Gaussian noise
with standard deviation 0.1 was injected at every level of the generative upsampling, as well as
at the input to the discriminator, as has been suggested by prior GAN reports [33–35]. Noise
was injected in the generator during both the training and testing phase. Noise injection to the
discriminator input has been experimentally shown in studies such as Huszar [35] to increase the
difficulty of the discriminator task and prevent the discriminator from overpowering the generator
too quickly, especially during the early phases of training [35]. The same model architecture and
hyperparameters were used for enhancing both human lip and mouse skin data. Hyperparameters
were not finely tuned, because objective evaluation of results was not possible due to the lack
of robust quantitative metrics for quality, and thus no reasonable criterion existed for finely
optimizing these hyperparameters. The above training details were found to produce reasonable
results, and are provided here as a starting point to the reader. Even though model training was
performed on image patches, the fully convolutional nature of the generator model (with no fully
connected layers) allowed the use of image inputs that were larger than and not restricted to
the training patch size of 256x256, therefore the full-sized original images could be used in the
generator at model prediction time.

Fig. 2. Illustrative images showing progress of training and effect of L1 regularization.
Image is from validation set. With large regularization, structural similarity (SSIM) values
were inflated despite poor OCT speckle reproduction.

2.3. Perceptual accuracy test by human OCT expert

In order to evaluate the quality and realism of the computational reconstructions, a human reader
was asked to evaluate the 2D-enhanced images. In typical GAN studies from the deep learning
literature, human readers are crowdsourced from online platforms such as Amazon Mechanical
Turk to evaluate the quality of generated photographs or artwork, but this is not feasible for
specialized imaging data such as OCT. For our study, the reader was an OCT expert (coauthor
X.L.) who was involved in planning the study and preparing the data, but was not involved in
the machine learning, was blinded to the models, and had not seen the model-generated results
beforehand. Image patches (256 x 256 pixels) were shown to the reader one at a time, and the
reader given two seconds to evaluate. In a ’paired’ test, a generated image was shown with its
ground truth image side by side and the reader asked to identify the real image. In an ’unpaired’
test, a single image, either generated or ground truth, was shown one at a time and the reader
asked to determine its identity. Two seconds was longer than a typical GAN perceptual test,
which gives only one second [34], so as to account for the complexity of a typical OCT image.
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Before commencing the test, 5 practice examples were showed, each followed by the answer. This
was then followed by a test of 50 questions in sequence, with no answers shown. After each test,
a ’confusion score’ was computed as the fraction of incorrectly read images over 50 total images,
giving a percentage. Higher confusion scores closer to 50% would indicate that many images
were incorrectly read, suggesting that generated images were realistic and nearly indistinguishable
from real high-resolution images (nearly random chance). Lower confusion scores closer to
0% would indicate that most images were correctly read, suggesting that generated images
were easily distinguished from real images. The confusion score of the GAN-generated results
was compared to separate tests on images produced by a state-of-the-art Unet (non-adversarial
training) originally designed for improving signal to noise ratio and image quality of microscopy
images [18], as well as a vanilla conditional GAN [20] without the additional injection of noise.

2.4. Cross-domain validation on real data

As a preliminary qualitative assessment of the models’ performance on real (not simulated)
images from a different data distribution from the training data, images of normal (no pathology)
human retinal images [36] and mouse bladder tissue [37] were obtained from freely available
datasets that accompanied published papers. Retinal images were acquired on a Zeiss Cirrus
ophthalmic spectral domain OCT system, with axial and lateral resolution 5 µm and 15 µm
respectively, and bladder tissue images were acquired on a Bioptigen Envisu R-class pre-clinical
imaging system, with axial and lateral resolution 0.9 µm (tissue) and 8.5 µm respectively. It was
necessary to resize the input images such that the size of speckle was approximately similar to that
of the training data. The generator model, like most modern neural networks, used convolution
operations, for which the convolutional filters had been learned from training data based on the
length scales (measured in number of pixels) of image features including speckle noise. Therefore
it was necessary for the images entering the generator to have roughly the same length scales of
speckle learned by the generator’s convolutional filters (Appendix). For datasets dissimilar to the
training data, images were resized to 4x larger in pixel dimensions, using bilinear interpolation,
before entering the generator. Low-signal regions deep in the images were cropped, and the
images were marginally resized to have dimensions of a multiple of 256, for ease of input to the
trained model. Since higher-resolution ground truths were not available, generated results were
qualitatively assessed.

3. Results and discussion

We have developed a deep learning based algorithm for resolution enhancement of OCT images,
based on previously reported techniques in generative adversarial networks. Using very high
resolution OCT images as a ground truth, 4x improvement in resolution was demonstrated
on images with synthetic resolution degradation. As with typical GAN generation, objective
evaluation of the generated outputs was challenging. Given the speckle noise that is inherent to
coherent imaging such as OCT or ultrasound, the model was not able nor expected to exactly
reproduce the noise content of the ground truth images. Therefore, conventional similarity
metrics such as Structural Similarity (SSIM) gave low scores. Excessive regularization produced
smoothed, speckle-reduced images with poor resemblance to OCT but still resulted in higher
SSIM scores (Fig. 2). Reduced regularization produced speckle noise that appeared qualitatively
realistic, suggesting that the noise distribution of the speckle was learned, while the exact details
of the generated speckle pattern was different from the ground truth. The generation of realistic
yet accurate speckle may be necessary in some specific contexts, and is an interesting possibility
for future investigation. Large regularization also seems to suggest itself as a means of speckle
noise reduction, although this needs more careful validation and was not the objective of this
work.
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Image examples showing resolution enhancement in depth, lateral, and both (2-D) axes are
shown in Figs. 3, 4, 5 and perceptual confusion scores presented in Table 1. The realism of
generated speckle appeared to be high. However, it can be observed that the detailed content of
the generated speckle pattern can differ from the ground truth, particularly in the 2-D case where
the inference space is larger (Fig. 5), even though the larger scale features are preserved and
have improved quality. This difference in generated noise pattern, especially in the low-signal
(nearly black) background of the images where noise can originate from the laser or other system
sources, can lead to poor results when standard quantitative pixel-level similarity metrics such as
SSIM are used.

Fig. 3. Enhancement of depth resolution. Scale bar 100 µm.

Human perceptual accuracy tests were preferred for evaluating the quality of the enhancement
(Table 1). Examples from a range of algorithms are presented in Figs. 6 and 8. The Richardson-
Lucy technique was generally poor (Appendix) and thus deemed not sufficiently competitive
for a human perceptual test. The non-adversarial Unet and vanilla cGAN (no noise injection)
produced images that were easily discriminated by a human OCT expert (0% confusion). The
noise-injected cGAN confusion scores were substantially higher. The unpaired test results were
lower than paired results, which was surprising and opposite to typical GAN studies [34] where
readers found single images more confusing. This may be due to our reader being a subject-matter
OCT expert, such that in the absence of a confusing alternate image, he was able to tap on
pre-existing specialized knowledge of OCT to distinguish realistic speckle. Results from the
3-frame averaged images showed better quality (higher confusion). In practice, the interpretation
of OCT images often involves an averaging/denoising process where speckle noise is intended
to be suppressed; training a model on denoised data could allow the model to focus on more
important image features rather than speckle noise, which is challenging to reproduce.
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Fig. 4. Enhancement of lateral resolution. Scale bar 100 µm.

Fig. 5. Enhancement of depth and lateral (2-D) resolution. Scale bar 100 µm.
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Table 1. Confusion score in % (0%: zero confusion, ∼50%:
maximal confusion) from perceptual accuracy test by a human

OCT expert reader on 2-D enhanced images, discriminating
between a model output and ground truth. The test consisted
of 50 images, such that confusion score was the fraction of
incorrectly read images over 50 total images. Higher scores
closer to 50% indicate higher quality model outputs nearly

indistinguishable from real high-resolution images (random
chance).

Data type and model
Single frame 3-frame average

Paired Unpaired Paired Unpaired

Mouse skin Unet 0 0 0 0

Mouse skin GANnonoise 0 6 2 4

Mouse skin GANnoise 42 22 52 26

Human lip Unet 0 0 0 0

Human lip GANnonoise 2 2 0 8

Human lip GANnoise 4 6 20 22

Fig. 6. Examples of images produced by a range of techniques. left-right: low-resolution
input, Richardson-Lucy deconvolution with Gaussian point spread function of σ = 2,
non-adversarial Unet, noise-injected cGAN, ground truth.

The multi-scale discriminator resulted in more realistic speckle generation (Fig. 7). The
single-scale discriminator produced speckles that have a chunky, artificial appearance, while
the multi-scale discriminator produced speckles with slightly more variation in size, shape and
intensity, although this can be subjective.

Noise injection in the architecture was important for quality and realism of the reconstruction.
Some examples of low quality images generated by a vanilla cGAN (no noise injection) are
shown in Fig. 8. The speckle pattern had a repeated grid-like artifact, severely affecting the
realism of the images. The images also sometimes showed a noise pattern resembling speckle
noise but repeated in most/all generated images (figure insets). This pattern might appear realistic
on single images, but was quickly detected by the human reader as a generative artifact when
observed over a large number of images from the same generator during a perceptual test.
The adversarial component of the algorithm appeared to be particularly important for OCT

generation; the baseline non-adversarial Unet approach has been reported to be successful in
microscopy for denoising, increasing signal-to-noise ratio and sharpening, but produced less
realistic OCT images than our cGAN approach. Examples of images produced are shown in Fig. 6.
This was in agreement with most computational super-resolution studies [38,39], which have
favored GANs using adversarial learning. Our experiments on a range of algorithmic approaches
were intended to demonstrate the value of conceptual improvements, namely adversarial learning
and noise injection, to the model. These experiments were not designed or intended to suggest
superiority of our approach over other super-resolution techniques, which were developed using
very different images and ground truths. The latter techniques will require dedicated optimization
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Fig. 7. Qualitative comparison of speckle generation by a single-scale and multi-scale
discriminator, with insets for closer inspection. The latter produced speckles with slightly
more variation in size, shape and intensity.

Fig. 8. Examples of failures from cGAN model with no injection of noise. Generated
images have repeated grid-like artifacts, and a repeated noise pattern (insets) in all images.

for this specialized task of OCT speckle generation, before a fair comparison can be made. Our
study had some important limitations. Small numbers of datasets were used in these proof-
of-concept experiments, limiting the generalizability of the findings. Low-resolution training
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data was synthetically created, based on simple operations of spectral cropping and averaging,
which may not sufficiently simulate low-resolution images from real-world conventional OCT
systems. Real low-resolution images will be of even lower quality. While the use of spectral
cropping to approximate low axial resolution may be closer to acceptable realism, the use of
spectral averaging to approximate low lateral resolution is likely much less severe than the use
of lower numerical aperture optics. The use of real-world low resolution data is an important
future step towards rigorous validation of our system. Our network architecture mimicked a
standard end-to-end learning design used in conventional GANs for artwork/photography, and
did not incorporate physical or optical models of OCT image formation. Hybrid physics-inspired
learning algorithms as suggested in recent computational optics studies [40] may potentially
improve performance. The use of human perceptual accuracy tests, while advantageous for
qualitatively evaluating OCT image quality and speckle restoration, should not be considered a
rigorous test for resolution improvement. A single OCT expert reader was used to evaluate the
images in the perceptual accuracy tests, therefore our results only demonstrate feasibility and
may not generalize to other human experts. Future studies involving multiple readers will need
to carefully control for specific levels of experience and familiarity with the specialized data, and
successful recruitment may depend on availability of such experts.
AI-based generative enhancement of resolution can have an important role in the use of high

resolution OCT to study small biological features/particles at the cellular level. Figure 9 shows a
series of lip images (cropped from a larger B-scan) acquired sequentially in a volumetric scan.
The images show a blood vessel structure (green arrow), and each frame shows cellular particles
(yellow arrows) flowing through the vessel. These particles can be seen with micro-OCT. At
low resolution (top row), these particles are impossible to distinguish from speckle noise. The
AI restoration process applied to low resolution images recovers the particles to a moderate
extent, sufficiently to distinguish from the surrounding tissue speckles. Potentially, resolution
enhancement based on AI tools could help in microscopic, dynamic analysis using conventional
OCT imaging.

Fig. 9. Regions of interest cropped from lip images showing blood vessel (green arrow),
across 5 consecutively acquired image frames from a single volumetric scan. Cellular
particles (yellow arrows) flowing in the vessel cannot be reliably distinguished from
surrounding speckles in the original low-resolution image, but are moderately restored by
the AI resolution enhancement.

As a preliminary step towards application on real data, publicly available retinal OCT images
[36] and mouse bladder OCT images [37] were enhanced (Fig. 10) using the model that performed



Research Article Vol. 11, No. 12 / 1 December 2020 / Biomedical Optics Express 7247

best on perceptual tests (Table 1), the mouse skin model. Axial resolution was visibly enhanced,
but lateral resolution enhancement was marginal. It should be noted that a simple deconvolution
of these images with a carefully designed point spread function may have the same visual effect
of enhanced axial resolution (thinner layers), so these experiments should be taken as illustrative
in nature, and motivating of future work. In the future, a more realistic simulation of low lateral
resolution in the training data (rather than simply a moving average of spectra) could further
improve performance. In the retina, the resolution of layers particularly the inner/outer segments
and retinal pigment epithelium (highlighted by inset in Fig. 10) was enhanced, which could have
relevance to clinical thickness measurements that have been proposed in previous high-resolution
OCT studies [41]. The model performance was found to be sensitive to the input image size;
using the original image dimensions produced low quality results. We postulate this to be due to
the size and scale of specific image features (e.g. speckle) that are learned from the training data
(Appendix). The speckle size of input images should at least roughly match that of the training
data; more robust protocols for domain transfer will be developed in future work.

Fig. 10. Preliminary experiments with cross-domain application, applying a model trained
on mouse skin micro-OCT to human retinal images (courtesy of [36]) and mouse bladder
images (courtesy of [37]) from commercial OCT systems.

These early proof-of-concept experiments suggest the possibility of packaging the high
performance of a prototype imaging system as a low cost software-based image enhancement tool
that may be used by scientific/clinical peers who lack access to cutting-edge hardware. As long
as the neural network model is trained on a data distribution that is identical or very similar to
the intended test usage (e.g. imaging of the same organism and organ under similar conditions),
the model can be expected to generate high-quality enhancement results. Even cross-domain
OCT applications seem feasible in principle, based on our preliminary experiments, although
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results will be more variable and will require careful validation. Concerns of super-resolution
inference leading to ’hallucinatory’ artifacts have been reported [42], which should not dampen
enthusiasm for this research direction but motivate validation by human readers and comparisons
with ground truth images. This concept may also be relevant to high speed swept source OCT
systems [43] that typically have lower optical bandwidth and thus worse axial resolution than
spectral domain systems. The possibility of having ’the best of both worlds’ of OCT systems
combining high speed and high resolution is an intriguing avenue of future investigation.

4. Conclusion

In this proof-of-concept study, the feasibility of axial and lateral resolution enhancement of OCT
images using a generative adversarial network was investigated. A high resolution ground truth
acquired with micro-OCT, paired with simulated low resolution image inputs were used to train a
neural network to generate resolution-enhanced outputs. Results were evaluated by a human OCT
expert for perceptual realism. Preliminary cross-domain experiments were performed on image
data from outside of the training data distribution. Future work will involve the acquisition of
more realistic training data, such as true low lateral resolution images taken with low numerical
aperture optics and low axial resolution images taken with reduced source bandwidth, larger
amounts of data with more variety of quality including typical imaging artifacts, and studies of
cross-domain transferability and robustness.

Appendix

5.1. Image resizing for a cross-domain transfer of generative models

As described in Methods, the input image to the generator should have length scale of features
approximately matched to that of the generator’s convolutional filters (learned from training
data). Figure 11 shows the effect of image scaling. Beyond 4x on input scaling, the generator

Fig. 11. Generated images from dataset (retina) outside of the training data distribution
(mouse skin), with various scale factors on the input image.
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appeared to produce unrealistic artifacts. In future studies of cross-domain generative transfer,
the scale factor can be a hyperparameter to be optimized, although generated images will still
require careful inspection by human experts for quality and realism.

5.2. Richardson-Lucy deconvolution parameter selection

Richardson-Lucy deconvolution was generally unable to produce good quality or realistic OCT
images of higher resolution. The point spread function was estimated by a Gaussian. The
generated images were sensitive to the parameters of σ, the standard deviation of the Gaussian
PSF, and number of iterations. Some examples are shown in Fig. 12.

Fig. 12. Images from Richardson-Lucy deconvolution with various parameters.

5.3. Quantitative metrics for image enhancement

While quantitative metrics are not able to adequately capture improvements in image content and
quality (Table 2), they are still important evaluations that complement perceptual tests. The low
metric scores indicate that the enhanced images are still substantially different from the ground
truth images at a pixel-level comparison, which is a downside to these generative approaches.

Table 2. Pixel-level quantitative metics, including Structural Similarity (SSIM) and
Peak Signal to Noise Ratio (PSNR), comparing ground truth and before/after

AI-based enhancement, and with/without noise injection. These metrics do not
adequately reflect improvements in quality and realism, but indicate that
generated images deviate from ground truth significantly at pixel level.

Enhance w/o noise injection
Single frame 3-frame average

SSIM PSNR SSIM PSNR

Mouse skin depth enhance 0.295→0.263 21.4→21.6 0.318→0.249 24.9→25.0

Mouse skin lateral enhance 0.217→0.288 20.3→21.7 0.282→0.333 23.0→26.1

Mouse skin 2-D enhance 0.085→0.104 19.9→20.5 0.122→0.131 22.9→24.2

Human lip depth enhance 0.382→0.347 21.1→21.9 0.393→0.394 23.5→26.2

Human lip lateral enhance 0.238→0.262 20.3→21.8 0.291→0.352 23.0→26.6

Human lip 2-D enhance 0.096→0.125 19.8→20.7 0.126→0.165 22.4→23.8

Enhance w/o noise injection
Single frame 3-frame average

SSIM PSNR SSIM PSNR

Mouse skin depth enhance 0.295→0.184 21.4→20.5 0.318→0.285 24.9→27.2

Mouse skin lateral enhance 0.217→0.184 20.3→21.0 0.282→0.265 23.0→25.3

Mouse skin 2-D enhance 0.085→0.073 19.9→20.3 0.122→0.114 22.9→24.1

Human lip depth enhance 0.382→0.241 21.1→21.2 0.393→0.289 23.5→22.0

Human lip lateral enhance 0.238→0.208 20.3→21.6 0.291→0.266 23.0→25.2

Human lip 2-D enhance 0.096→0.085 19.8→20.4 0.126→0.149 22.4→24.0
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Speckle noise is difficult to be recovered deterministically at the pixel-level. In many scenarios,
pixel-level differences may be less important than the recovery of high-resolution content that
could indicate important tissue features.

The low quantitative metrics are illustrated in Fig. 13, where generated patches appear accurate
on a global scale and of good quality, but closer inspection (insets) reveal pixel-level deviations
from the ground truth. Generally OCT interpretation is qualitative and does not rely on detailed
analysis on individual speckles, but in more demanding applications where speckles are measured
or quantified, such deviations would be of greater concern. While the goal of the study was
to generate speckle of sufficient quality for detailed analysis, and we believe this has been
demonstrated, these results also suggest that the speckle generated by this technique is not yet
suitable for quantitative measurements of individual speckle variation.

Fig. 13. Qualitative comparison of generated patches and ground truths, illustrating good
agreement of image features on a global scale but significant pixel-level deviations.
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